Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).

نویسندگان

  • Young-Pil Kim
  • Zongwen Jin
  • Eunkyung Kim
  • Sunyoung Park
  • Young-Hee Oh
  • Hak-Sung Kim
چکیده

We demonstrated in vitro small ubiquitin-like modifier (SUMO)-mediated modification (SUMOylation) of RanGTPase activating protein-1 (RanGAP1) by using bioluminescence resonance energy transfer (BRET) for studying protein interactions. Renilla luciferase (Rluc) was fused to SUMO, and RanGAP1, the binding partner of SUMO, was fused to enhanced yellow fluorescence protein (EYFP). Upon binding of SUMO and RanGAP1, BRET was observed between EYFP (donor) and Rluc (acceptor) in the presence of E1 (Aos1/Uba2) and E2 (Ubc9) enzymes, whereas mutation (K524A) of RanGAP1 at its SUMO binding site prevented significant energy transfer. Comparing BRET and fluorescence resonance energy transfer (FRET) efficiencies using this in vitro model system, we observed that BRET efficiency was 3-fold higher than FRET efficiency, due to the lower background signal intensity of EYFP in the BRET system. Consequently, BRET system is expected to be useful for in vitro analysis of SUMOylation as well as studying other protein interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring the activation state of the insulin receptor using bioluminescence resonance energy transfer.

We have developed a procedure based on bioluminescence resonance energy transfer (BRET) to monitor the activation state of the insulin receptor in vitro. Human insulin receptor cDNA was fused to either Renilla luciferase (Rluc) or enhanced yellow fluorescent protein (EYFP) coding sequences. Fusion insulin receptors were partially purified by wheat-germ lectin chromatography from human embryonic...

متن کامل

Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins.

Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated.

متن کامل

An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects.

Bioluminescence resonance energy transfer (BRET) is currently used for monitoring various intracellular events, including protein-protein interactions, in normal and aberrant signal transduction pathways. However, the BRET vectors currently used lack adequate sensitivity for imaging events of interest from both single living cells and small living subjects. Taking advantage of the critical rela...

متن کامل

Bioluminescence Resonance Energy Transfer ( BRET 2 TM ) Principle , Applications and Products BRET 2 Technology Application Note BRT - 001

BRET 2 TM (Bioluminescence Resonance Energy Transfer) is an advanced, non-destructive, cell-based assay technology that is perfectly suited for proteomics applications, including receptor research and the mapping of signal transduction pathways. BRET is based on energy transfer between fusion proteins containing Renilla luciferase (Rluc) and a mutant of the Green Fluorescent Protein (GFP). The ...

متن کامل

Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer

Protein-protein interactions are essential biological reactions occurring at inter- and intra-cellular levels. The analysis of their mechanism is generally required in order link to understand their various cellular functions. Bioluminescence resonance energy transfer (BRET), which is based on an enzymatic activity of luciferase, is a useful tool for investigating protein-protein interactions i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 382 3  شماره 

صفحات  -

تاریخ انتشار 2009